5 years ago

Quantized Transport, Strain-Induced Perfectly Conducting Modes, and Valley Filtering on Shape-Optimized Graphene Corbino Devices

Quantized Transport, Strain-Induced Perfectly Conducting Modes, and Valley Filtering on Shape-Optimized Graphene Corbino Devices
Vitor M. Pereira, Gareth W. Jones, Antonio H. Castro Neto, Dario Andres Bahamon
The extreme mechanical resilience of graphene and the peculiar coupling it hosts between lattice and electronic degrees of freedom have spawned a strong impetus toward strain-engineered graphene where, on the one hand, strain augments the richness of its phenomenology and makes possible new concepts for electronic devices, and on the other hand, new and extreme physics might take place. Here, we demonstrate that the shape of substrates supporting graphene sheets can be optimized for approachable experiments where strain-induced pseudomagnetic fields (PMF) can be tailored by pressure for directionally selective electronic transmission and pinching-off of current flow down to the quantum channel limit. The Corbino-type layout explored here furthermore allows filtering of charge carriers according to valley and current direction, which can be used to inject or collect valley-polarized currents, thus realizing one of the basic elements required for valleytronics. Our results are based on a framework developed to realistically determine the combination of strain, external parameters, and geometry optimally compatible with the target spatial profile of a desired physical property—the PMF in this case. Characteristic conductance profiles are analyzed through quantum transport calculations on large graphene devices having the optimal shape.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01663

DOI: 10.1021/acs.nanolett.7b01663

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.