5 years ago

Continuum Model of Gas Uptake for Inhomogeneous Fluids

Continuum Model of Gas Uptake for Inhomogeneous Fluids
Ji Hoon Shim, James R. Morris, Yungok Ihm, Timo Thonhauser, Lukas Vlcek, Valentino R. Cooper, Pieremanuele Canepa
We describe a continuum model of gas uptake for inhomogeneous fluids (CMGIF) and use it to predict fluid adsorption in porous materials directly from gas-substrate interaction energies determined by first-principles calculations or accurate effective force fields. The method uses a perturbation approach to correct bulk fluid interactions for local inhomogeneities caused by gas–substrate interactions, and predicts local pressure and density of the adsorbed gas. The accuracy and limitations of the model are tested by comparison with the results of grand canonical Monte Carlo simulations of hydrogen uptake in metal–organic frameworks (MOFs). We show that the approach provides accurate predictions at room temperature and at low temperatures for less strongly interacting materials. The speed of the CMGIF method makes it a promising candidate for high-throughput materials discovery in connection with existing databases of nanoporous materials.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04834

DOI: 10.1021/acs.jpcc.7b04834

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.