5 years ago

Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles

Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles
Green nanostructured heterogeneous catalysts were prepared via a bottom-up strategy. Designed ligands were synthesized joining covalently an electrondeficient pyrimidine residue and a scorpiand azamacrocycle. The desired molecular properties were easily transferred to nanostructured materials in two steps: first, exploiting their spontaneous chemisorption onto multi-walled carbon nanotubes (MWCNTs) via the pyrimidinic moiety in water at room temperature, then, taking advantage of the easy coordination of Pd(II) to the azamacrocycle in the same conditions. An evenly distribution of catalytic centres was obtained on the MWCNTs surface. Catalytic properties of these materials were assessed toward the Cu-free Sonogashira cross-coupling, leading to significant improvements in terms of yields and reaction conditions, especially when considering the possibility to maintain yields of 90%, or above, in a feasible amount of time (2h), while working under green conditions (water, 50°C, aerobic atmosphere). The catalysts proved to be reusable for several cycles with good yields.

Publisher URL: www.sciencedirect.com/science

DOI: S002195171730266X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.