5 years ago

Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices

Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices
Bianka M. D. Puscher, Rubén D. Costa, Meltem F. Aygüler, Pablo Docampo
Hybrid and all-inorganic perovskite (PK) materials are a promising next generation of semiconducting materials due to their outstanding light-harvesting features, as well as their color-tunablility and efficient luminescent properties that lead to highly efficient photovoltaic and lighting devices. Bulk PK films are both ionic and electronic conductors under the presence of an externally applied electric field. In this work, the internal ion motion behavior is demonstrated within PK nanoparticles in thin-film devices by means of different long-time poling scheme assays and both static and dynamic electrochemical impedance spectroscopy measurements. In particular, the existence of a dynamic device behavior is related to the migration and rearrangement of different ionic species upon applying different driving schemes. The latter resembles the well-known signatures of the ionic motion in light-emitting electrochemical cells (LECs), that is, (i) the formation of electrical double layers due to the ionic distribution at the electrodes' interfaces, (ii) the growth of the doped regions once the charge injection is effective, and (iii) the subsequent formation of a non-doped region in the bulk of the device. Hence, this comprehensive study opens up an alternative route toward understanding the dynamics inside hybrid perovskite materials based on the large body of knowledge of LECs. The effect of the ion motion on the mechanism of hybrid perovskite nanoparticles (PK NP) devices is investigated by static and dynamic electrochemical impedance spectroscopy and different poling schemes. Overall, these studies suggest that the electrical behavior of the PK NP devices resemble that of light-emitting electrochemical cells.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201602283

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.