5 years ago

Tuning Selectivity in Aliphatic C–H Bond Oxidation of N-Alkylamides and Phthalimides Catalyzed by Manganese Complexes

Tuning Selectivity in Aliphatic C–H Bond Oxidation of N-Alkylamides and Phthalimides Catalyzed by Manganese Complexes
Miquel Costas, Michela Salamone, Massimo Bietti, Giulia Carboni, Michela Milan
Site selective C–H oxidation of N-alkylamides and phthalimides with aqueous hydrogen peroxide catalyzed by manganese complexes is described. These catalysts are shown to exhibit substantially improved performance in product yields and substrate scope in comparison with their iron counterparts. The nature of the amide and imide group and of the N-alkyl moiety are shown to be effective tools in order to finely tune site selectivity between proximal (adjacent to the nitrogen) and remote C–H bonds on the basis of steric, electronic, and stereoelectronic effects. Moreover, formation of the α-hydroxyalkyl product in good yield and with excellent product chemoselectivity was observed in the reactions of the pivalamide and acetamide derivatives bearing an α-CH2 group, pointing again toward an important role played by stereoelectronic effects and supporting the hypothesis that these oxidations proceed via hydrogen atom transfer (HAT) to a high-valent manganese–oxo species. Good product yields and mass balances are obtained in short reaction times and under mild experimental conditions when relatively low loadings of an electron-rich manganese catalyst are used. The potential utility of these reactions for preparative purposes is highlighted in the site-selective oxidation of the pivalamide and phthalimide derivatives of substrates of pharmaceutical interest.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b02151

DOI: 10.1021/acscatal.7b02151

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.