5 years ago

New cyclopentadienyl rhodium catalysts for electrochemical hydrogen production

New cyclopentadienyl rhodium catalysts for electrochemical hydrogen production
The electrocatalytic activity of two new molecular rhodium catalysts was investigated in a hydrogen evolution system in the presence of a proton source using glassy carbon electrodes in acetonitrile and water. Rhodium complexes supported by pbi and pbt ligands, i.e., [Cp*Rh(pbt)Cl](PF6) (1) and [Cp*Rh(pbi)Cl] (2) (where Cp* is pentamethylcyclopentadienyl, pbt is 2-(2′-pyridyl)benzothiazole, and pbi is 2-(2′-pyridyl)benzimidazole), were observed to electrocatalytically evolve H2 at potential of −0.90V vs Ag/AgCl in CH3CN and CH3CN/H2O. Cyclic voltammetry of 1 and 2 in the presence of acid revealed redox waves consistent with the Rh(III)/Rh(I) couple. Bulk electrolysis were used to confirm the catalytic nature of the process for complexes 1 and 2, with turnover numbers in excess of 100 and essentially quantitative faradaic yields for H2 production. The potentials at which these Rh complexes catalyzed H2 evolution were close to the thermodynamic potentials for the production of H2 from protons in CH3CN and CH3CN/H2O, with the small overpotential being 50mV for 1 as determined by electrochemistry. The complex 1 with more positive Rh(III/I) redox potentials exhibited higher activity for H2 production.

Publisher URL: www.sciencedirect.com/science

DOI: S0920586117303838

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.