3 years ago

Synthesis and Characterization of Ultrathin Silver Sulfide Nanoplatelets

Synthesis and Characterization of Ultrathin Silver Sulfide Nanoplatelets
William D. Rice, Lenore Kubie, Joseph R. Murphy, Joshua T. Stecher, Subash Kattel, Bruce A. Parkinson, Qian Yang, Meghan E. Kern, Laurie A. King
We report the synthesis of ultrathin silver sulfide (Ag2S) nanoplatelets (NPLs) synthesized via a one-pot method in ethylene glycol with 3-mercaptopropionic acid serving as both the sulfur precursor and the platelet ligand. The colloidally synthesized nanoplatelets are exceptionally thin, with a thickness of only 3.5 ± 0.2 Å and a 1S exciton Bohr diameter to confinement ratio of ∼12.6. The NPL growth is shown to be quantized by layer thickness using absorption and photoluminescence (PL) spectroscopy. Transmission electron microscopy, atomic force microscopy, and X-ray diffraction analyses of the NPLs show that they correspond to the (202) plane of the β-Ag2S structure. The PL quantum yield of these NPLs is ∼30%, suggesting their potential use in biomedical imaging. Optoelectronic properties were evaluated via sensitized photocurrent spectroscopy with the resulting spectra closely matching the distinctive absorption spectral shape of the Ag2S NPLs.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b04280

DOI: 10.1021/acsnano.7b04280

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.