3 years ago

Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells

Optically Tunable Plasmonic Two-Dimensional Ag Quantum Dot Arrays for Optimal Light Absorption in Polymer Solar Cells
Sang Kyu Kwak, Jin Young Kim, Bright Walker, Tae Kyung Lee, Soojin Park, Jungwoo Heo, Seyeong Song
The application of localized surface plasmon resonance (LSPR) phenomena is an effective strategy to enhance the performance of polymer solar cells (PSCs) because of their ability to efficiently scatter light and dramatically increase light absorption in the active layer of PSCs. Unlike previous reports investigating LSPR materials in PSCs, we have approached the LSPR phenomenon from a physical perspective by examining the influence of the surrounding environment on LSPR properties. Uniformly ordered two-dimensional 10 nm Ag quantum dot arrays (2D Ag QAs) were prepared and utilized in PSCs. The 2D Ag QAs were incorporated into electron transport layers with different refractive indices, which showed a significant bathochromic shift as the refractive index increased and excellent agreement with theoretical calculations taking intrinsic size effects, nonlocal response, and plasmon coupling effects into account. When incorporated into PSCs, power conversion efficiencies of up to 8.51% were realized—a 12.5% enhancement compared to devices without Ag QAs.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03763

DOI: 10.1021/acs.jpcc.7b03763

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.