3 years ago

Purification Of The Mammalian NgBR/hCIT cis-Prenyltransferase Complex: IdentificationOf A Conserved Carboxyterminal RxG Motif Crucial For Enzymatic Activity

B., Grabinska, B. H., Park, E. J., Kraehling, K. A., J. R., Sessa, Edani
cis-Prenyltransferases (cisPTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. In eukaryotes and archaea, cisPT is the first enzyme committed to the synthesis of dolichyl-phosphate (DolP). DolP is obligate lipid carrier in protein glycosylation reactions in mammalian cells. The homodimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS) generates 11 isoprene units and has been structurally and mechanistically characterized in great detail. Recently our group discovered that unlike UPPS, mammalian cisPT is a heteromer consisting of NgBR (NUS1) and hCIT (DHDDS) subunits and this composition has been confirmed in plants and fungal cisPTs. Here, we establish the first purification system for heteromeric cisPT and show that both NgBR and hCIT subunits function in catalysis and substrate binding. Finally, we identified a critical RxG sequence in the C-terminal tail of NgBR that is conserved and essential for enzyme activity across phyla.

Publisher URL: http://biorxiv.org/cgi/content/short/139675v1

DOI: 10.1101/139675

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.