3 years ago

Reversible Heterolytic Cleavage of the H–H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride

Reversible Heterolytic Cleavage of the H–H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride
Shaoguang Zhang, Aaron M. Appel, R. Morris Bullock
Controlling the heterolytic cleavage of the H–H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled, spanning 4 orders of magnitude at 25 °C, from 2.1 × 103 s–1 to ≥107 s–1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane diphosphine ligand with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to frustrated Lewis pairs. The H–H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable-temperature 1H, 15N, and 2-D 1H–1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7 and show a linear correlation with the logarithm of the exchange rates. This correlation likely results from the exchange process involving key intermediates that differ by an intramolecular proton transfer. Specifically, the proton-hydride exchange appears to occur by formation of a molybdenum dihydride or dihydrogen complex, resulting from proton transfer from the pendant amine to the metal hydride. The exchange dynamics are controlled by the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03053

DOI: 10.1021/jacs.7b03053

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.