3 years ago

Biocomposites based on poly(lactic acid) and superabsorbent sodium polyacrylate

Biocomposites based on poly(lactic acid) and superabsorbent sodium polyacrylate
Fabio Bignotti, Francesco Baldi, Luca Di Landro, Stefano Pandini, Luciana Sartore
In this research work, biocomposites based on crosslinked particles of sodium polyacrylate, commonly used as superabsorbent polymer, and poly(l-lactic acid) (PLLA) were developed to obtain superabsorbent thermoplastic products, and to elucidate the role of this type of filler (i.e., polymeric crosslinked particles) on their overall physical-mechanical behavior. Samples prepared by melt-blending components with different ratios showed a biphasic system with a uniform distribution of particles, with diameters up to about 50 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA, that is, superabsorbent PLLA, showed excellent swelling properties, demonstrating that crosslinked particles retain their superabsorbent ability even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidenced enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles, revealing a regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore foams coded PLASAW, that is, PLASA after water treatment, produced in absence of organic solvents and chemical foaming agents, with good physicomechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45655.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45655

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.