5 years ago

Effect of chemically modified clinoptilolite on the thermal, morphological, and gas separation properties of mixed matrix membranes

Effect of chemically modified clinoptilolite on the thermal, morphological, and gas separation properties of mixed matrix membranes
Luis Alfonso García-Cerda, Sandra P. García-Rodríguez, H. Iván Meléndez-Ortiz, Gema C. Hernández-Silva, Angel de J. Montes-Luna, Griselda Castruita-de León
Mixed matrix membranes (MMM) based on polysulfone and chemically modified clinoptilolite were prepared. Clinoptilolite enriched with Ca2+, K+, and Na+ by ion exchange at two test temperatures was prepared. Chemical composition was monitored by energy dispersive X-ray spectroscopy. X-ray diffraction, thermogravimetric analysis, and N2 adsorption–desorption isotherms were also performed. Thermal and morphological properties of MMM were evaluated. CH4/CO2 gas mixture permeability tests at different upstream pressure were carried out. Type of exchanged cation in modified clinoptilolite affected the CO2 permeability. An improvement on the CO2/CH4 selectivity values in the MMM compared to the polymeric membrane was appreciated. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45659.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45659

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.