5 years ago

Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells

Yang Wang, Han-Yan Tsai, Tzu-Sen Su, Yun Chi, Tzu-Chien Wei
Spiro-OMeTAD with symmetric spiro-bifluorene unit has dominated the investigation of hole-transporting material (HTM) for efficient perovskite solar cells (PSCs) despite of its low intrinsic hole conductivity and instability. In this study, we designed and synthesized three asymmetric spiro-phenylpyrazole/fluorene base HTMs, namely: WY-1, WY-2 and WY-3. They exhibit excellent electrochemical properties and hole conductivities. Moreover, the PSC based on WY-1 exhibits the highest power conversion efficiency (PCE) of 14.2%, which is comparable to the control device employing spiro-OMeTAD as HTM (14.8%). These results pave the way to further optimization of both molecular design and device performance of the spiro-based HTMs.

Publisher URL: https://www.nature.com/articles/s41598-017-08187-4

DOI: 10.1038/s41598-017-08187-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.