3 years ago

Cross-seeding of prions by aggregated α-synuclein leads to transmissible spongiform encephalopathy

Elizaveta Katorcha, Mervyn J. Monteiro, Natallia Makarava, Ilia V. Baskakov, Gabor G. Kovacs, Young Jin Lee, Iris Lindberg

by Elizaveta Katorcha, Natallia Makarava, Young Jin Lee, Iris Lindberg, Mervyn J. Monteiro, Gabor G. Kovacs, Ilia V. Baskakov

Aggregation of misfolded proteins or peptides is a common feature of neurodegenerative diseases including Alzheimer’s, Parkinson’s, Huntington’s, prion and other diseases. Recent years have witnessed a growing number of reports of overlap in neuropathological features that were once thought to be unique to only one neurodegenerative disorder. However, the origin for the overlap remains unclear. One possibility is that diseases with mixed brain pathologies might arise from cross-seeding of one amyloidogenic protein by aggregated states of unrelated proteins. In the current study we examined whether prion replication can be induced by cross-seeding by α-synuclein or Aβ peptide. We found that α-synuclein aggregates formed in cultured cells or in vitro display cross-seeding activity and trigger misfolding of the prion protein (PrPC) in serial Protein Misfolding Cyclic Amplification reactions, producing self-replicating PrP states characterized by a short C-terminal proteinase K (PK)-resistant region referred to as PrPres. Non-fibrillar α-synuclein or fibrillar Aβ failed to cross-seed misfolding of PrPC. Remarkably, PrPres triggered by aggregated α-synuclein in vitro propagated in animals and, upon serial transmission, produced PrPSc and clinical prion disease characterized by spongiosis and astrocytic gliosis. The current study demonstrates that aggregated α-synuclein is potent in cross-seeding of prion protein misfolding and aggregation in vitro, producing self-replicating states that can lead to transmissible prion diseases upon serial passaging in wild type animals. In summary, the current work documents direct cross-seeding between unrelated amyloidogenic proteins associated with different neurodegenerative diseases. This study suggests that early interaction between unrelated amyloidogenic proteins might underlie the etiology of mixed neurodegenerative proteinopathies.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.ppat.1006563

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.