3 years ago

Understanding caustic crossings in giant arcs: characteristic scales, event rates, and constraints on compact dark matter.

Nick Kaiser, Tom Broadhurst, Patrick L. Kelly, Jose M. Diego, Masamune Oguri

The recent discovery of fast transient events near critical curves of massive galaxy clusters, which are interpreted as highly magnified individual stars in giant arcs due to caustic crossing, opens up the possibility of using such microlensing events to constrain a range of dark matter models such as primordial black holes and scalar field dark matter. Based on a simple analytic model, we study lensing properties of a point mass lens embedded in a high magnification region, and derive the dependence of the peak brightness, microlensing time scales, and event rates on the mass of the point mass lens as well as the radius of a source star that is magnified. We find that the lens mass and source radius of the first event MACS J1149 Lensed Star 1 (LS1) are constrained, with the lens mass range of $0.1~M_\odot \lesssim M \lesssim 4\times 10^3M_\odot$ and the source radius range of $40~R_\odot \lesssim R \lesssim 260~R_\odot$. In the most plausible case with $M\approx 0.3~M_\odot$ and $R\approx 180~R_\odot$, the source star should have been magnified by a factor of $\approx 4300$ at the peak. The derived lens properties are fully consistent with the interpretation that MACS J1149 LS1 is a microlensing event produced by a star that contributes to the intra-cluster light. We argue that compact dark matter models with high fractional mass densities for the mass range $10^{-5}M_\odot \lesssim M\lesssim 10^2M_\odot$ are inconsistent with the observation of MACS J1149 LS1 because such models predict too low magnifications. Our work demonstrates a potential use of caustic crossing events in giant arcs to constrain compact dark matter.

Publisher URL: http://arxiv.org/abs/1710.00148

DOI: arXiv:1710.00148v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.