3 years ago

DREAM, a program for arbitrary-precision computation of dimensional recurrence relations solutions, and its applications.

Roman N. Lee, Kirill T. Mingulov

We present the Mathematica package DREAM for arbitrarily high precision computation of multiloop integrals within the DRA (Dimensional Recurrence & Analyticity) method as solutions of dimensional recurrence relations. Starting from these relations, the package automatically constructs the inhomogeneous solutions and reduces the manual efforts to setting proper homogeneous solutions. DREAM also provides means to define the homogeneous solutions of the higher-order recurrence relations (and can construct those of the first-order recurrence relations automatically). Therefore, this package can be used to apply the DRA method to the topologies with sectors having more than one master integral. Two nontrivial examples are presented: four-loop fully massive tadpole diagrams of cat-eye topology and three-loop cut diagrams which are necessary for computation of the width of the para-positronium decay into four photons. The analytical form of this width is obtained here for the first time to the best of our knowledge.

Publisher URL: http://arxiv.org/abs/1712.05173

DOI: arXiv:1712.05173v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.