3 years ago

Self-Assembled formation of long, thin, and uncoalesced GaN nanowires on crystalline TiN films.

Sergio Fernández-Garrido, David van Treeck, Vladimir M. Kaganer, Lutz Geelhaar, Jelle J. W. Goertz, Oliver Brandt, Gabriele Calabrese

We investigate in detail the self-assembled nucleation and growth of GaN nanowires by molecular beam epitaxy on crystalline TiN films. We demonstrate that this type of substrate allows the growth of long and thin GaN nanowires that do not suffer from coalescence, which is in contrast to the growth on Si and other substrates. Only beyond a certain nanowire length that depends on the nanowire number density and exceeds here 1.5 {\mu}m, coalescence takes place by bundling, i.e. the same process as on Si. By analyzing the nearest neighbor distance distribution, we identify diffusion-induced repulsion of neighboring nanowires as the main mechanism limiting the nanowire number density during nucleation on TiN. Since on Si the final number density is determined by shadowing of the impinging molecular beams by existing nanowires, it is the difference in adatom surface diffusion that enables on TiN the formation of nanowire ensembles with reduced number density. These nanowire ensembles combine properties that make them a promising basis for the growth of core-shell heterostructures.

Publisher URL: http://arxiv.org/abs/1801.02966

DOI: arXiv:1801.02966v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.