3 years ago

Development of a spectral source inverse model by using generalized polynomial chaos.

Jayant Kalagnanam, Xiao Liu, Youngdeok Hwang, Kyongmin Yeo

We present a spectral inverse model to estimate a smooth source function from a limited number of observations for an advection-diffusion problem. A standard least-square inverse model is formulated by using a set of Gaussian radial basis functions (GRBF) on a rectangular mesh system. Here, the choice of the collocation points is modeled as a random variable and the generalized polynomial chaos (gPC) expansion is used to represent the random mesh system. It is shown that the convolution of gPC and GRBF provides hierarchical basis functions for a spectral source estimation. We propose a mixed l1 and l2 regularization to exploit the hierarchical nature of the basis polynomials to find a sparse solution. The spectral inverse model has an advantage over the standard least-square inverse model when the number of data is limited. It is shown that the spectral inverse model provides a good estimate of the source function even when the number of unknown parameters (m) is much larger the number of data (n), e.g., m/n > 50.

Publisher URL: http://arxiv.org/abs/1801.03009

DOI: arXiv:1801.03009v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.