3 years ago

Sampling molecular conformations and dynamics in a multi-user virtual reality framework.

Anne Roudaut, Oussama Metatla, Edward Dawn, Michael O Connor, Matthew Sutton, Mark Wonnacott, Adrian J. Mulholland, Phil Bates, David R. Glowacki, Becca Rose Glowacki, Philip Tew, Rebecca Sage, Helen M. Deeks

We describe a framework for interactive molecular dynamics in a multiuser virtual reality environment, combining rigorous cloud-mounted physical atomistic simulation with commodity virtual reality hardware, which we have made accessible to readers (see isci.itch.io/nsb-imd). It allows users to visualize and sample, with atomic-level precision, the structures and dynamics of complex molecular structures 'on the fly', and to interact with other users in the same virtual environment. A series of controlled studies, wherein participants were tasked with a range of molecular manipulation goals (threading methane through a nanotube, changing helical screw-sense, and tying a protein knot), quantitatively demonstrate that users within the interactive VR environment can complete sophisticated molecular modelling tasks more quickly than they can using conventional interfaces, especially for molecular pathways and structural transitions whose conformational choreographies are intrinsically 3d. This framework should accelerate progress in nanoscale molecular engineering areas such as drug development, synthetic biology, and catalyst design. More broadly, our findings highlight VR's potential in scientific domains where 3d dynamics matter, spanning research and education.

Publisher URL: http://arxiv.org/abs/1801.02884

DOI: arXiv:1801.02884v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.