5 years ago

High Crystallization of Perovskite Film by a Fast Electric Current Annealing Process

High Crystallization of Perovskite Film by a Fast Electric Current Annealing Process
Lixin Xiao, Zhijian Chen, Xuan Guo, Weihai Sun, Cuncun Wu, Wei Luo
High-efficiency organic–inorganic hybrid perovskite solar cells have experienced rapid development and attracted significant attention in recent years. Crystal growth as an important factor would significantly influence the quality of perovskite films and ultimately the device performance, which usually requires thermal annealing for 10 min or more. Herein, we demonstrate a new method to get high crystallization of perovskite film by electric current annealing for just 5 s. In contrast to conventional thermal annealing, a homogeneous perovskite film was formed with larger grains and fewer pinholes, leading to a better performance of the device with higher open-circuit voltage and fill factor. An average power conversion efficiency of 17.02% with electric current annealing was obtained, which is higher than that of devices with a conventional thermal annealing process (16.05%). This facile electric current annealing process with less energy loss and time consumption shows great potential in the industrial mass production of photovoltaic devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07775

DOI: 10.1021/acsami.7b07775

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.