5 years ago

Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth

Versatile Solution-Processed Synthesis of Two-Dimensional Ultrathin Metal Chalcogenides Following Frank–van der Merwe Growth
Ding-jiang Xue, Huaibing Song, Jia Zhang, Dawen Zeng, Xiaojun Zhan, Zha Li
Two-dimensional (2D) ultrathin metal chalcogenides represent a class of promising materials for various applications thanks to attractive physicochemical properties. However, a reliable pathway for fabricating ultrathin metal chalcogenides nanosheets, regardless of the bulk crystals of their 3D counterparts, still remains a challenge. Herein, we present a versatile solution-processed template synthesis strategy, in which a single molecular-level precursor anneals to ultrathin single-crystal nanosheets with the aid of lattice-matching templates, following the Frank–van der Merwe growth mode and featuring high quality, low cost, scalability, and processability. Following this strategy, Sb2S3, MoS2, and ZnS nanosheets are successfully prepared as representatives for materials whose bulk counterparts possess 1D, 2D, and 3D crystal structures, respectively, and the growth mechanism is confirmed by crystal mode analysis. As a proof-of-concept application, MoS2 and Sb2S3 nanosheets are used for gas sensor and flexible photodetector applications, respectively, which exhibit excellent performance. The method can also be easily extended to other ultrathin nanosheets like single metals, metal oxide, metal nitride, and heterostructures.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04765

DOI: 10.1021/acsami.7b04765

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.