5 years ago

Controlling the Interfacial Environment in the Electrosynthesis of MnOx Nanostructures for High-Performance Oxygen Reduction/Evolution Electrocatalysis

Controlling the Interfacial Environment in the Electrosynthesis of MnOx Nanostructures for High-Performance Oxygen Reduction/Evolution Electrocatalysis
Chun Haow Kung, Akram Alfantazi, Pooya Hosseini-Benhangi, Elöd L. Gyenge
High-performance, nonprecious metal bifunctional electrocatalysts for the oxygen reduction and evolution reactions (ORR and OER, respectively) are of great importance for rechargeable metal–air batteries and regenerative fuel cells. A comprehensive study based on statistical design of experiments is presented to investigate and optimize the surfactant-assisted structure and the resultant bifunctional ORR/OER activity of anodically deposited manganese oxide (MnOx) catalysts. Three classes of surfactants are studied: anionic (sodium dodecyl sulfate, SDS), non-ionic (t-octylphenoxypolyethoxyethanol, Triton X-100), and cationic (cetyltrimethylammonium bromide, CTAB). The adsorption of surfactants has two main effects: increased deposition current density due to higher Mn2+ and Mn3+ concentrations at the outer Helmholtz plane (Frumkin effect on the electrodeposition kinetics) and templating of the MnOx nanostructure. CTAB produces MnOx with nanoneedle (1D) morphology, whereas nanospherical- and nanopetal-like morphologies are obtained with SDS and Triton, respectively. The bifunctional performance is assessed based on three criteria: OER/ORR onset potential window (defined at 2 and −2 mA cm–2) and separately the ORR and OER mass activities. The best compromise among these three criteria is obtained either with Triton X-100 deposited catalyst composed of MnOOH and Mn3O4 or SDS deposited catalyst containing a combination of α- and β-MnO2, MnOOH, and Mn3O4.The interaction effects among the deposition variables (surfactant type and concentration, anode potential, Mn2+ concentration, and temperature) reveal the optimal strategy for high-activity bifunctional MnOx catalyst synthesis. Mass activities for OER and ORR up to 49 A g–1 (at 1556 mVRHE) and −1.36 A g–1 (at 656 mVRHE) are obtained, respectively.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05501

DOI: 10.1021/acsami.7b05501

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.