5 years ago

Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation

Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation
Fumin Tang, Zhihu Sun, Yong Jiang, Fengchun Hu, Shiqiang Wei, Jinkun Liu, Qinghua Liu, Weiren Cheng, Tao Yao, Hui Su, Yuanyuan Huang
Developing efficient and durable oxygen evolution electrocatalyst is of paramount importance for the large-scale supply of renewable energy sources. Herein, we report the design of significant surface hydrophilicity based on cobalt oxyhydroxide (CoOOH) nanosheets to greatly improve the surface hydroxyl species adsorption and reaction kinetics at the Helmholtz double layer for high-efficiency water oxidation activity. The as-designed CoOOH-graphene nanosheets achieve a small surface water contact angle of ∼23° and a large double-layer capacitance (Cdl) of 8.44 mF/cm2 and thus could evidently strengthen surface species adsorption and trigger electrochemical oxygen evolution reaction (OER) under a quite low onset potential of 200 mV with an excellent Tafel slope of 32 mV/dec. X-ray absorption spectroscopy and first-principles calculations demonstrate that the strong interface electron coupling between CoOOH and graphene extracts partial electrons from the active sties and increases the electron state density around the Fermi level and effectively promotes the surface intermediates formation for efficient OER.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07088

DOI: 10.1021/acsami.7b07088

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.