3 years ago

Optimal noise-canceling shortcuts to adiabaticity: application to noisy Majorana-based gates.

Armin Rahmani, Kyle Ritland

Adiabatic braiding of Majorana zero modes can be used for topologically protected quantum information processing. While extremely robust to many environmental perturbations, these systems are vulnerable to noise with high-frequency components. Ironically, slower processes needed for adiabaticity allow more noise-induced excitations to accumulate, resulting in an antiadiabatic behavior that limits the precision of Majorana gates if some noise is present. In a recent publication [Phys. Rev. B 96, 075158 (2017)], fast optimal protocols were proposed as a shortcut for implementing the same unitary operation as the adiabatic braiding. These shortcuts sacrifice topological protection in the absence of noise but provide performance gains and remarkable robustness to noise due to the shorter evolution time. Nevertheless, gates optimized for vanishing noise are suboptimal in the presence of noise. If we know the noise strength beforehand, can we design protocols optimized for the existing unavoidable noise, which will effectively correct the noise-induced errors? We address this question in the present paper. We find such optimal protocols using simulated-annealing Monte Carlo simulations. The numerically found pulse shapes, which we fully characterize, are in agreement with Pontryagin's minimum principle, which allows us to arbitrarily improve the approximate numerical results (due to discretization and imperfect convergence) and obtain numerically exact optimal protocols. The protocols are \textit{bang-bang} (sequence of sudden quenches) for vanishing noise, but contain continuous segments in the presence of multiplicative noise due to the nonlinearity of the master equation governing the evolution. We find that such noise-optimized protocols completely eliminate the above-mentioned antiadiabatic behavior.

Publisher URL: http://arxiv.org/abs/1801.02731

DOI: arXiv:1801.02731v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.