3 years ago

Coherent Random Lasing from Dye Aggregates in Polydimethylsiloxane Thin Films

Coherent Random Lasing from Dye Aggregates in Polydimethylsiloxane Thin Films
Yiping Cui, Yanqing Lu, Chunlei Wang, Yangyang Feng, Changgui Lu, Zhixiang Cheng, Lihua Ye
The coherent random laser (CRL) from dye-doped polydimethylsiloxane (PDMS) has been investigated in both nanoparticle-doped (NP-doped) thin films and pure dye thin films. Compared with the literature, the pump threshold is only 1.5 mJ/cm2 in the pure dye thin film with a low dye concentration. The spontaneously formed micro-/nanocrystals of Pyrromethene 597 (PM597) dye support both gain and random feedback in the bulk of the PDMS during the sample preparation. When the SiO2 NPs were doped, the pump threshold was reduced to 0.75 mJ/cm2. The threshold increased after the film was peeled off from glass, which indicates that the photon localization effect of the leaky-waveguide structure plays an important role in the reduction of the CRL threshold. By a change in the pump stripe length or the thickness of the film, the peak wavelength red-shifts 6.7 or 5.93 nm, respectively. The PM597 dye molecule solubility changes, and they spontaneously aggregate in the process of toluene volatilization; the PDMS cures, which is the reason for the formation of PM597 micro-/nanocrystals. This thin film random laser with a low dye concentration can be used in integrated optoelectronics and display imaging.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b07464

DOI: 10.1021/acsami.7b07464

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.