3 years ago

Stratification of mixtures in evaporating liquid films occurs only for a range of volume fractions of the smaller component.

Richard P Sear

I model the drying of a liquid film containing small and big colloid particles. Fortini et al. [A. Fortini et al, Phys. Rev. Lett. 116, 118301 (2016)] studied these films with both computer simulation and experiment. They found that at the end of drying the mixture had stratified with a layer of the smaller particles on top of the big particles. I develop a simple model for this process. The model has two ingredients: arrest of the diffusion of the particles at high density, and diffusiophoretic motion of the big particles due to gradients in the concentration of the small particles. The model predicts that stratification only occurs over a range of initial concentrations of the smaller colloidal species. At concentrations that are either too low or too high, the concentration gradients due to drying are not enough to push the big particles away and so produce a layer at the top of only small particles. In agreement with earlier work, the model also predicts that large Peclet numbers for drying are needed to see stratification.

Publisher URL: http://arxiv.org/abs/1801.03021

DOI: arXiv:1801.03021v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.