5 years ago

Localized Liquid-Phase Synthesis of Porous SnO2 Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors

Localized Liquid-Phase Synthesis of Porous SnO2 Nanotubes on MEMS Platform for Low-Power, High Performance Gas Sensors
Inkyu Park, Jeonghoon Yun, Daejong Yang, Kyungnam Kang, Incheol Cho
We have developed highly sensitive, low-power gas sensors through the novel integration method of porous SnO2 nanotubes (NTs) on a micro-electro-mechanical-systems (MEMS) platform. As a template material, ZnO nanowires (NWs) were directly synthesized on beam-shaped, suspended microheaters through an in situ localized hydrothermal reaction induced by local thermal energy around the Joule-heated area. Also, the liquid-phase deposition process enabled the formation of a porous SnO2 thin film on the surface of ZnO NWs and simultaneous etching of the ZnO core, eventually to generate porous SnO2 NTs. Because of the localized synthesis of SnO2 NTs on the suspended microheater, very low power for the gas sensor operation (<6 mW) has been realized. Moreover, the sensing performance (e.g., sensitivity and response time) of synthesized SnO2 NTs was dramatically enhanced compared to that of ZnO NWs. In addition, the sensing performance was further improved by forming SnO2–ZnO hybrid nanostructures due to the heterojunction effect.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04850

DOI: 10.1021/acsami.7b04850

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.