3 years ago

Elucidation of Excitation Energy Dependent Correlated Triplet Pair Formation Pathways in an Endothermic Singlet Fission System

of Excitation Energy Dependent Correlated
Triplet Pair Formation Pathways in an Endothermic Singlet Fission
Anthony J. Petty, Hannah L. Stern, Alexandre Cheminal, John E. Anthony, Akshay Rao, Arya Thampi, Murad J. Y. Tayebjee
Singlet fission is the spin-allowed conversion of a photogenerated singlet exciton into two triplet excitons in organic semiconductors, which could enable single-junction photovoltaic cells to break the Shockley–Queisser limit. The conversion of singlets to free triplets is mediated by an intermediate correlated triplet pair (TT) state, but an understanding of how the formation and dissociation of these states depend on energetics and morphology is lacking. In this study, we probe the dynamics of TT states in a model endothermic fission system, TIPS-Tc nanoparticles, which show a mixture of crystalline and disordered regions. We observe the formation of different TT states, with varying yield and different rates of singlet decay, depending on the excitation energy. An emissive TT state is observed to grow in over 1 ns when excited at 480 nm, in contrast to excitation at lower energies where this emissive TT state is not observed. This suggests that the pathway for singlet fission in these nanoparticles is strongly influenced by the initial sub-100 fs relaxation of the photoexcited state away from the Franck–Condon point, with multiple possible TT states. On nanosecond time scales, the TT states are converted to free triplets, which suggests that TT states might diffuse into the disordered regions of the nanoparticles where their breakup to free triplets is favored. The free triplets then decay on μs time scales, despite the confined nature of the system. Our results provide important insights into the mechanism of endothermic singlet fission and the design of nanostructures to harness singlet fission.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06274

DOI: 10.1021/jacs.7b06274

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.