3 years ago

Hierarchically Porous Graphene/ZIF-8 Hybrid Aerogel: Preparation, CO2 Uptake Capacity, and Mechanical Property

Porous Graphene/ZIF-8 Hybrid Aerogel: Preparation, CO2 Uptake Capacity, and Mechanical Property
Jianming Zhang, Lijuan Zhou, Min Jiang, Ruofei Xing, Houzhi Li
A hierarchical zeolitic imidazole framework (ZIF) combining a micropore with a mesoporous structure is desirable to enhance mass transport and gives rise to novel applications. Here, hierarchically porous graphene/ZIF-8 hybrid aerogel (GZAn) materials were successfully prepared by a two-step reduction strategy and a layer-by-layer assembly method. To avoid a tedious dry step and the use of an energy-consuming freeze-drying technology, a reduced graphene oxide hydrogel with different reduction degrees was chosen as a template to grow ZIF-8 crystals in situ. The parameter of density and elemental analysis was adopted to calculate the amount of ZIF-8 in GZAn materials for different assembly cycles. The distribution of micropores and mesopores of GZAn materials was controlled by changing the loading of ZIFs in GZAn materials. Furthermore, GZA8 materials showed enhanced CO2 uptake capacity (0.99 mmol g–1, 298 K, 1 bar) than pure ZIF-s crystals and pure graphene aerogels, showing an excellent synergistic effect of hierarchical pore structures. Meanwhile, with the increase of ZIF-8 loading, the mechanical robustness of GZAn was uplifted obviously. This work provides an efficient method to prepare hierarchically porous ZIFs-based materials with good CO2 uptake capacity and tunable mechanical robustness.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b17728

DOI: 10.1021/acsami.7b17728

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.