3 years ago

Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable Feedstock with Favorable Surface Chemistry for CO2 Capture

Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable Feedstock with Favorable Surface Chemistry for CO2 Capture
Chenggong Sun, Xin Liu, Colin Snape, Jingjing Liu, Qian Xue, Emily Smith, Hao Liu, Yuan Sun
Novel hierarchically structured microporous biocarbons with exceptionally high capacities for CO2 capture have been synthesized from the abundant agricultural waste of rice husk (RH), using a facile methodology that effectively integrated carbonization, activation, and potassium intercalation into a one-step process. Textural characterization demonstrates that the synthesized biocarbons exhibit exceedingly high ultra-microporosity accounting for up to 95% of total porosity mainly as a result of the naturally occurring silicon compounds within the RH molecular framework structures. With a modest surface area of up to 1035 m2/g and a total pore volume of 0.43 cm3/g, the best performing RH carbon has shown exceptionally high and fully reversible CO2 uptake capacity of 2.0 mmol/g at 25 °C and a CO2 partial pressure of 0.15 bar, which represents one of the highest uptakes ever reported for both carbon and MOF materials usually prepared from using cost-prohibitive precursor materials with cumbersome methodologies. It has been found that up to 50% of the total CO2 uptake is attributable to the unique surface chemistry of the RH carbons, which appears to be dominated by the enhanced formation of extra-framework potassium cations owing to the exceedingly high levels of ultra-microporosity and the presence of zeolitic structures incorporated within the carbon matrices. Characterizations by EDX element mapping, XPS, and heat of adsorption measurements confirm the existence of a range of zeolitic structures, which essentially transforms the RH carbons into a kind of zeolite–carbon nanocomposite material with strong surface affinity for CO2.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06665

DOI: 10.1021/acsami.7b06665

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.