3 years ago

Formation of Ruddlesden–Popper Faults and Their Effect on the Magnetic Properties in Pr0.5Sr0.5CoO3 Thin Films

of Ruddlesden–Popper Faults and Their Effect on the Magnetic
Properties in Pr0.5Sr0.5CoO3 Thin
Shao-Bo Mi, Shao-Dong Cheng, Lu Lu, Hong-Mei Jing, Sheng Cheng, Ming Liu, Chun-Lin Jia
Epitaxial Pr0.5Sr0.5CoO3 thin films have been grown on single-crystalline (La0.289Sr0.712)(Al0.633Ta0.356)O3(001) substrates by the pulsed laser deposition technique. The magnetic properties and microstructure of these films are investigated. It is found that Ruddlesden–Popper faults (RP faults) can be introduced in the films by changing the laser repetition rate. The segregation of Pr at the RP faults is characterized by atomic-resolution chemical mapping. The formation of the RP faults not only contributes to the epitaxial strain relaxation but also significantly decreases the ferromagnetic long-range order of the films, resulting in lower magnetizations than those of the fault-free films. Our results provide a strategy for tuning the magnetic properties of cobalt-based perovskite films by modifying the microstructure through the film growth process.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b16341

DOI: 10.1021/acsami.7b16341

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.