3 years ago

Nanoscale Organic–Inorganic Hybrid Photosensitizers for Highly Effective Photodynamic Cancer Therapy

Nanoscale
Organic–Inorganic Hybrid Photosensitizers for Highly Effective
Photodynamic Cancer Therapy
Fei Wang, Yu Xu, Jia Chen, Dongliang Yang, Lianhui Wang, Lei Zhang, Biqing Bao, Yu Gao
Recently, photodynamic therapy (PDT) has attracted significant attention as a minimally invasive approach for cancer treatment. Clinical applications of current photosensitizers are often limited by their poor water solubility, low singlet oxygen (1O2) quantum yields, long-term toxicity, instability, and complex nanostructures. Here, we report a rational design of polyhedral oligomeric silsesquioxanes (POSSs)-based porphyrin (PPP5000) used as an intrinsically nanoscale photosensitizer. In this strategy, inorganic 3D rigid block POSSs not only act as antiaggregate units but also provide conjugating reactive sites for further chemical modification. Without an additional carrier and formulation process, PPP5000 intrinsically shows high water solubility (∼40 mg/mL), good PDT efficiency, and more excellent anticancer performance compared to tetra(hydroxyphenyl)porphyrin (the parent compound of m-THPC, Foscan). Considering the organic nature of porphyrin and the biodegradable property of inorganic POSS scaffolds at physiological conditions, the present work may lead to a new generation of biodegradable and intrinsic PDT agents with overall performance superior to conventional agents in terms of 1O2 production efficiency, water solubility, structurally stability, photostability, and biocompatibility.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b15581

DOI: 10.1021/acsami.7b15581

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.