5 years ago

Development of Nanofiber Sponges-Containing Nerve Guidance Conduit for Peripheral Nerve Regeneration in Vivo

Development of Nanofiber Sponges-Containing Nerve Guidance Conduit for Peripheral Nerve Regeneration in Vivo
Xiumei Mo, Salem S. Al-Deyab, Hao Zheng, Dawei Li, Zifei Zhou, Yinxian Yu, Weiming Chen, Tong Wu, Hany El-Hamshary, Binbin Sun
In the study of hollow nerve guidance conduit (NGC), the dispersion of regenerated axons always confused researchers. To address this problem, filler-containing NGC was prepared, which showed better effect in the application of nerve tissue engineering. In this study, nanofiber sponges with abundant macropores, high porosity, and superior compressive strength were fabricated by electrospinning and freeze-drying. Poly(l-lactic acid-co-ε-caprolactone)/silk fibroin (PLCL/SF) nanofiber sponges were used as filler to prepare three-dimensional nanofiber sponges-containing (NS-containing) NGC. In order to study the effect of fillers for nerve regeneration, hollow NGC was set as control. In vitro cell viability studies indicated that the NS-containing NGC could enhance the proliferation of Schwann cells (SCs) due to the macroporous structure. The results of hematoxylin–eosin (HE) and immunofluorescence staining confirmed that SCs infiltrated into the nanofiber sponges. Subsequently, the NS-containing NGC was implanted in a rat sciatic nerve defect model to evaluate the effect in vivo. NS-containing NGC group performed better in nerve function recovery than hollow NGC group. In consideration of the walking track and triceps weight analysis, NS-containing NGC was close to the autograft group. In addition, histological and morphological analyses with HE and toluidine blue (TB) staining, and transmission electron microscope (TEM) were conducted. Better nerve regeneration was observed on NS-containing NGC group both quantitatively and qualitatively. Furthermore, the results of three indexes’ immuno-histochemistry and two indexes’ immunofluorescence all indicated good nerve regeneration of NS-containing NGC as well, compared with hollow NGC. The results demonstrated NS-containing NGC had great potential in the application of peripheral nerve repair.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06707

DOI: 10.1021/acsami.7b06707

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.