3 years ago

Electrical Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites

Electrical
Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites
Benjamin A. Kowalski, Richard A. Vaia, Timothy J. White, Benji Maruyama, Pamela F. Lloyd, Rahul Rao, Tyler Guin, Christopher A. Grabowski, Vincent P. Tondiglia, Anesia D. Auguste
Liquid crystal elastomers (LCEs) exhibit anisotropic mechanical, thermal, and optical properties. The director orientation within an LCE can be spatially localized into voxels [three-dimensional (3-D) volume elements] via photoalignment surfaces. Here, we prepare nanocomposites in which both the orientation of the LCE and single-walled carbon nanotube (SWNT) are locally and arbitrarily oriented in discrete voxels. The addition of SWNTs increases the stiffness of the LCE in the orientation direction, yielding a material with a 5:1 directional modulus contrast. The inclusion of SWNT modifies the thermomechanical response and, most notably, is shown to enable distinctive electromechanical deformation of the nanocomposite. Specifically, the incorporation of SWNTs sensitizes the LCE to a dc field, enabling uniaxial electrostriction along the orientation direction. We demonstrate that localized orientation of the LCE and SWNT allows complex 3-D shape transformations to be electrically triggered. Initial experiments indicate that the SWNT–polymer interfaces play a crucial role in enabling the electrostriction reported herein.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b13814

DOI: 10.1021/acsami.7b13814

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.