3 years ago

Injectable and Degradable pH-Responsive Hydrogels via Spontaneous Amino–Yne Click Reaction

and Degradable pH-Responsive Hydrogels via Spontaneous Amino–Yne
Click Reaction
Xulin Jiang, Jiachang Huang
Injectable hydrogels have attracted increasing attention in tissue regeneration and local drug delivery applications. Current click reactions for preparing injectable hydrogels often require a photoinitiator or catalyst, which may be toxic and may involve complex synthesis of precursors. Here, we report a facile and inexpensive method to prepare injectable and degradable hydrogels via spontaneous amino–yne click reaction without using any initiator or catalyst under physiological conditions based on telechelic electron-deficient dipropiolate ester of polyethylene glycol and water-soluble commercially available carboxymethyl chitosan (CMC). The gelation time, mechanical property, and degradation rate of the hydrogels could be adjusted by varying CMC concentrations and stoichiometric ratios. The reversible pH-induced sol–gel transitions of the hydrogel are presented and the pH-controlled drug release behaviors are demonstrated, of which the mechanism is discussed. In vitro cytotoxicity assays and in vivo in situ injection study of the CMC-based hydrogels showed favorable gel formation, nontoxicity, and good tissue biocompatibility. Therefore, these biodegradable and injectable hydrogels prepared by spontaneous amino–yne click reaction hold potential for tissue engineering and other biomedical applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b18141

DOI: 10.1021/acsami.7b18141

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.