3 years ago

Impact of Ultrasmall Platinum Nanoparticle Coating on Different Morphologies of Gold Nanostructures for Multiple One-Pot Photocatalytic Environment Protection Reactions

Impact
of Ultrasmall Platinum Nanoparticle Coating on Different Morphologies
of Gold Nanostructures for Multiple One-Pot Photocatalytic Environment
Protection Reactions
Chan Hee Park, Sang Bong Lee, Cheol Sang Kim, Dinesh Kumar
Here, we report the preparation of various morphologies of core–satellite hybrid plasmonic nanomaterials of gold and platinum, viz., the coating of platinum nanoparticles on gold nanostars (Pt@AuNSs), nanospheres (Pt@AuNPs), and nanorods (Pt@AuNRs) for visible-NIR-sunlight illuminated highly efficient photoconversion of CO2 to HCOOH and visible light mediated degradation of various organic dyes (methylene blue, methyl orange, and methyl red) in a single step at room temperature. In comparison, Pt@AuNSs shows higher conversion efficiency for CO2 photoconversion to HCOOH with 1.52% of quantum yield and 2.58% of chemical yield in visible-light illumination. There was a 200-fold increase in the conversion efficiency after PtNP coating to AuNSs. On the other hand, Pt@AuNPs (quantum yield = 1.44%) and Pt@AuNRs (quantum yield = 0.64%) also show the significant conversion rate in visible and NIR light, respectively. All the hybrid nanoparticles were found to be stable, whereas PtNPs increase the stability of AuNSs incredibly, during the photoconversion reaction and reused for five CO2 reduction reaction cycles without losing photocatalytic activity. Moreover, Pt@AuNSs also showed higher photocatalytic activity for organic pollutant degradation and degraded methylene blue, methyl red, and methyl orange in 45, 75, and 80 min with 0.104 min–1, 0.055 min–1, and 0.044 min–1 reaction rate, respectively. The results highlighted the crucial role of PtNPs as a highly efficient cocatalyst as well as the impact of increases in surface area with the change in morphology of gold nanostructures on CO2 photoconversion and organic dye degradation.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b12119

DOI: 10.1021/acsami.7b12119

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.