3 years ago

Preparation of Ultrasensitive Humidity-Sensing Films by Aerosol Deposition

of Ultrasensitive Humidity-Sensing Films by Aerosol Deposition
Jong-Min Oh, Hong-Ki Kim, Ming-Qing Liu, Cong Wang, Zhao Yao, Nam-Young Kim, Jun-Ge Liang
Aerosol deposition (AD) is a novel ceramic film preparation technique exhibiting the advantages of room-temperature operation and highly efficient film growth. Despite these advantages, AD has not been used for preparing humidity-sensing films. Herein, room-temperature AD was utilized to deposit BaTiO3 films on a glass substrate with a Pt interdigital capacitor, and their humidity-sensing performances were evaluated in detail, with further optimization performed by postannealing at temperatures of 100, 200, ..., 600 °C. Sensor responses (i.e., capacitance variations) were measured in a humidity chamber for relative humidities (RHs) of 20–90%, with the best sensitivity (461.02) and a balanced performance at both low and high RHs observed for the chip annealed at 500 °C. In addition, its response and recovery were extremely fast, respectively, at 3 and 6 s and it kept a stable recording with the maximum error rate of 0.1% over a 120 h aging test. Compared with other BaTiO3-based humidity sensors, the above chip required less thermal energy for its preparation but featured a more than 2-fold higher sensitivity and a superior detection balance at RHs of 20–90%. Cross-sectional transmission electron microscopy imaging revealed that the prepared film featured a transitional variable-density structure, with moisture absorption and desorption being promoted by a specific capillary structure. Finally, a bilayer physical model was developed to explain the mechanism of enhanced humidity sensitivity by the prepared BaTiO3 film.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b14082

DOI: 10.1021/acsami.7b14082

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.