3 years ago

Highly Proton Conducting Polyelectrolyte Membranes with Unusual Water Swelling Behavior Based on Triptycene-containing Poly(arylene ether sulfone) Multiblock Copolymers

Highly Proton Conducting Polyelectrolyte Membranes
with Unusual Water Swelling Behavior Based on Triptycene-containing
Poly(arylene ether sulfone) Multiblock Copolymers
Shuangjiang Luo, Ruilan Guo, Liang Zhu, Yingxi Zhu, Benxin Jing, Joseph Aboki
Multiblock poly(arylene ether sulfone) copolymers are attractive for polyelectrolyte membrane fuel cell applications due to their reportedly improved proton conductivity under partially hydrated conditions and better mechanical/thermal stability compared to Nafion. However, the long hydrophilic sequences required to achieve high conductivity usually lead to excessive water uptake and swelling, which degrade membrane dimensional stability. Herein, we report a fundamentally new approach to address this grand challenge by introducing shape-persistent triptycene units into the hydrophobic sequences of multiblock copolymers, which induce strong supramolecular chain-threading and interlocking interactions that effectively suppress water swelling. Consequently, unlike previously reported multiblock copolymer systems, the water swelling of the triptycene-containing multiblock copolymers did not increase proportionally with water uptake. This combination of high water uptake and low swelling behavior of these copolymers resulted in excellent proton conductivity and membrane dimensional stability under fully hydrated conditions. In particular, the triptycene-containing multiblock copolymer film with the longest hydrophilic block length (i.e., BPSH100-TRP0-15k-15k) had a water uptake of 105%, an excellent proton conductivity of 0.150 S/cm, and a volume swelling ratio of just 29% (more than 42% reduction compared to Nafion 212).

Publisher URL: http://dx.doi.org/10.1021/acsami.7b13542

DOI: 10.1021/acsami.7b13542

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.