3 years ago

Multimodal Kelvin Probe Force Microscopy Investigations of a Photovoltaic WSe2/MoS2 Type-II Interface

Kelvin Probe Force Microscopy Investigations of a Photovoltaic WSe2/MoS2 Type-II Interface
Yann Almadori, Nedjma Bendiab, Benjamin Grévin
Atomically thin transition-metal dichalcogenides (TMDC) have become a new platform for the development of next-generation optoelectronic and light-harvesting devices. Here, we report a Kelvin probe force microscopy (KPFM) investigation carried out on a type-II photovoltaic heterojunction based on WSe2 monolayer flakes and a bilayer MoS2 film stacked in vertical configuration on a Si/SiO2 substrate. Band offset characterized by a significant interfacial dipole is pointed out at the WSe2/MoS2 vertical junction. The photocarrier generation process and phototransport are studied by applying a differential technique allowing to map directly two-dimensional images of the surface photovoltage (SPV) over the vertical heterojunctions (vHJ) and in its immediate vicinity. Differential SPV reveals the impact of chemical defects on the photocarrier generation and that negative charges diffuse in the MoS2 a few hundreds of nanometers away from the vHJ. The analysis of the SPV data confirms unambiguously that light absorption results in the generation of free charge carriers that do not remain coulomb-bound at the type-II interface. A truly quantitative determination of the electron–hole (e–h) quasi-Fermi levels splitting (i.e., the open-circuit voltage) is achieved by measuring the differential vacuum-level shift over the WSe2 flakes and the MoS2 layer. The dependence of the energy-level splitting as a function of the optical power reveals that Shockley–Read–Hall processes significantly contribute to the interlayer recombination dynamics. Finally, a newly developed time-resolved mode of the KPFM is applied to map the SPV decay time constants. The time-resolved SPV images reveal the dynamics of delayed recombination processes originating from photocarriers trapping at the SiO2/TMDC interfaces.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b14616

DOI: 10.1021/acsami.7b14616

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.