3 years ago

The Crucial Role of the Support in the Transformations of Bimetallic Nanoparticles and Catalytic Performance

The Crucial Role of the Support in the Transformations
of Bimetallic Nanoparticles and Catalytic Performance
Alice Scarpellini, Liberato Manna, Tathiana M. Kokumai, Priscila Destro, Daniela Zanchet, Lea Pasquale, Massimo Colombo
The combination of two or more metals, forming alloys, core–shells, or other complex heterometallic nanostructures, has substantially spanned the available options to finely tune electronic and structural properties, opening a myriad of opportunities that has yet to be fully explored in different fields. In catalysis, the rational exploitation and design of bimetallic and trimetallic catalysts has just started. Several major aspects such as stability, phase segregation, and alloy–dealloy mechanisms have yet to be deeply understood and correlated with intrinsic factors such as nanoparticle size, composition, and structure and with extrinsic factors, or external agents, such as temperature, reaction gases, and support. Here, by combining model catalysts based on AuCu nanoparticles supported on silica or alumina with in situ characterization techniques under redox pretreatments and CO oxidation reaction, we demonstrate the crucial role of the support with regard to determining the stable active phase of bimetallic supported catalysts. This strategy, associated with theoretical studies, could lead to the rational design of unique active sites.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b03685

DOI: 10.1021/acscatal.7b03685

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.