3 years ago

Unraveling the differential structural stability and dynamics features of T7 endolysin partially folded conformations

Unraveling the differential structural stability and dynamics features of T7 endolysin partially folded conformations
Characterization of partially collapsed protein conformations at atomic level is a daunting task due to their inherent flexibility and conformational heterogeneity. T7 bacteriophage endolysin (T7L) is a single-domain amidase that facilitates the lysis of Gram-negative bacteria. T7L exhibits a pH-dependent structural transition from native state to partially folded (PF) conformation. In the pH range 5–3, T7L PF states display differential ANS binding characteristics. Methods CD, fluorescence, NMR spectroscopy and lysis assays were used to investigate the structure-stability- dynamics relationships of T7L PF conformations. Results Structural studies indicated a partial loss of secondary/tertiary structures compared to its native state. The loss in the tertiary structure and the hydrophobic core opening increases upon decrease of pH from 5 to 3. Thermal denaturation experiments delineated that the pH 5 conformation is thermally irreversible in contrast to pH 3, depicting that hydrophobic core opening is essential for thermal reversibility. Further, urea dependent unfolding features of PF state at pH 5 and 4 evidenced for a collapsed conformation at intermediate urea concentrations. Residue level studies revealed that α1-helix and β3-β4 segment of T7L are the major contributors for such a structural collapse and inherent dynamics. Conclusions The results suggested that the low pH PF states of T7L are heterogeneous and exhibits differential structural, unfolding, thermal reversibility, and dynamic features. General significance Unraveling the structure-stability characteristics of different endolysin conformations is essential for designing novel chimeric and engineered phage endolysins as broadband antimicrobial agents over a varied pH range.

Publisher URL: www.sciencedirect.com/science

DOI: S0304416518300047

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.