3 years ago

Intrinsic Point Defects in Inorganic Cesium Lead Iodide Perovskite CsPbI3

Intrinsic Point Defects in Inorganic Cesium Lead Iodide
Perovskite CsPbI3
Wan-Jian Yin, Yang Huang, Yao He
Cesium lead iodide (CsPbI3) has recently emerged as a promising solar photovoltaic absorber. However, the cubic perovskite (α-phase) remains stable only at high temperature and reverts to a photoinactive nonperovskite (δ-phase) CsPbI3 at room temperature. In this work, the formation energies and transition energy levels of intrinsic point defects in γ- (more stable than α-phase) and δ-phases have been studied systematically by first-principles calculations. It is found that CsPbI3 exhibits a unipolar self-doping behavior (p-type conductivity), which is in contrast to CH3NH3PbI3. Most of the intrinsic defects induce deeper transition energy levels in δ-phase than in γ-phase. This is due to the small Pb–I–Pb bond angles in δ-phase that results in the weak antibonding character of valence band maximum (VBM). However, the strong antibonding character of VBM plays a critical role in keeping defect tolerance in semiconductors. Therefore, these results indicate the importance of the large metal–halide–metal bond angle for the performance of perovskite solar cells.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b10045

DOI: 10.1021/acs.jpcc.7b10045

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.