5 years ago

Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications

Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications
Theodosis Skaltsas, Nikos Tagmatarchis, Antonia Kagkoura
Recently, nanomaterials that harvest solar energy and convert it to other forms of energy are of great interest. In this context, transition metal chalcogenides (TMCs) have recently been in the spotlight due to their optoelectronic properties that render them potential candidates mainly in energy conversion applications. Integration of TMCs onto a strong electron-accepting material, such as graphene, yielding novel TMC/graphene ensembles is of high significance, since photoinduced charge-transfer phenomena, leading to intra-ensemble charge separation, may occur. In this review, we highlight the utility of TMC/graphene ensembles, with a specific focus on latest trends in applications, while their synthetic routes are also discussed. In fact, TMC/graphene ensembles are photocatalytically active and superior as compared to intact TMCs analogues, when examined toward photocatalytic H2 evolution, dye degradation and redox transformations of organic compounds. Moreover, TMC/graphene ensembles have shown excellent prospect when employed in photovoltaics and biosensing applications. Finally, the future prospects of such materials are outlined. A light ensemble! Transition-metal chalcogenides/graphene ensembles are a novel class of materials for energy applications particularly in photocatalysis, photovoltaics and biosensing (see figure). In this Review, a critical evaluation of the development in the field is presented, with key-examples from the recent literature.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201700242

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.