3 years ago

Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid Vesicles

Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid Vesicles
Drew Marquardt, Gerald N. Rechberger, Marie-Sousai Appavou, John Katsaras, Ilse Letofsky-Papst, Georg Pabst, Frederick A. Heberle, Barbara Eicher


We measured the effect of intrinsic lipid curvature, J0, on structural properties of asymmetric vesicles made of palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J0<0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J00). Electron microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering, combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively in both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not affect each other's acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this coupling in the fluid bilayers is most likely the result of entropic contributions.

Publisher URL: http://www.cell.com/biophysj/fulltext/S0006-3495(17)31238-9

DOI: 10.1016/j.bpj.2017.11.009

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.