4 years ago

Chemically Controlled Epigenome Editing through an Inducible dCas9 System

Chemically Controlled Epigenome Editing through an Inducible dCas9 System
Roushu Zhang, Eunju Lim, Dan Gao, Fu-Sen Liang, Hao Yan, Tingjun Chen, Guihua Zeng
Although histone modifications are associated with gene activities, studies of their causal relationships have been difficult. For this purpose, we developed an inducible system integrating dCas9-based targeting and chemically induced proximity technologies to allow small molecule induced recruitment of P300 acetyltransferase and the acetylation of H3K27 at precise gene loci in cells. Employing the new technique, we elucidated the temporal order of histone acetylation and gene activation, as well as the stability of the installed histone modification.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06555

DOI: 10.1021/jacs.7b06555

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.