3 years ago

Engineering Intracellularly Retained Gaussia Luciferase Reporters for Improved Biosensing and Molecular Imaging Applications

Engineering Intracellularly Retained Gaussia Luciferase Reporters for Improved Biosensing and Molecular Imaging Applications
Ramasamy Paulmurugan, Tarik F. Massoud, Sharon Hori, Thillai V. Sekar, Shuchi Gaur, Aarohi Bhargava-Shah, Rayhaneh Afjei, Sanjiv S. Gambhir
Gaussia luciferase (GLUC) is a bioluminescent reporter protein of increasing importance. As a secretory protein, it has increased sensitivity in vitro and in vivo (∼20 000-fold, and ∼1000-fold, respectively) over its competitor, secreted alkaline phosphatase. Unfortunately, this same advantageous secretory nature of GLUC limits its usefulness for many other possible intracellular applications, e.g., imaging signaling pathways in intact cells, in vivo imaging, and in developing molecular imaging biosensors to study protein–protein interactions and protein folding. Hence, to widen the research applications of GLUC, we developed engineered variants that increase its intracellular retention both by modifying the N-terminal secretory signal peptide and by tagging additional sequences to its C-terminal region. We found that when GLUC was expressed in mammalian cells, its N-terminal secretory signal peptide comprising amino acids 1–16 was essential for GLUC folding and functional activity in addition to its inherent secretory property. Modification of the C-terminus of GLUC by tagging a four amino acid (KDEL) endoplasmic reticulum targeting peptide in multiple repeats significantly improved its intracellular retention, with little impact on its folding and enzymatic activity. We used stable cells expressing this engineered GLUC with KDEL repeats to monitor chemically induced endoplasmic reticulum stress on cells. Additionally, we engineered an apoptotic sensor using modified variants of GLUC containing a four amino acid caspase substrate peptide (DEVD) between the GLUC protein and the KDEL repeats. Its use in cell culture resulted in increased GLUC secretion in the growth medium when cells were treated with the chemotherapeutic drugs doxorubicin, paclitaxel, and carboplatin. We thus successfully engineered a new variant GLUC protein that is retained inside cells rather than secreted extracellularly. We validated this novel reporter by incorporating it in biosensors for detection of cellular endoplasmic reticulum stress and caspase activation. This new molecularly engineered enzymatic reporter has the potential for widespread applications in biological research.

Publisher URL: http://dx.doi.org/10.1021/acschembio.7b00454

DOI: 10.1021/acschembio.7b00454

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.