5 years ago

Molecular Dynamics Simulations of Metal/Molten Alkali Carbonate Interfaces

Molecular Dynamics Simulations of Metal/Molten Alkali Carbonate Interfaces
S. Kjelstrup, D. Bedeaux, P. Ballone, D. L. Roest
Neutral and charged interfaces between molten alkali carbonates M2CO3 (M = Li, Na, and K) and planar solid walls have been investigated by molecular dynamics based on a rigid-ions force field. Simulations cover the temperature range 1200 K ≤ T ≤ 1500 K at a moderate (∼15 kbar) overpressure to compensate for the slight overestimate of the system volume by the force field model. The results provide an intriguing view of the interplay among ion packing, oscillating screening, anisotropic correlations, and ion dynamics at the interface. The mass and charge density profiles display prominent peaks at contact, and tend to their constant bulk value through several oscillations, whose amplitude decays exponentially moving away from the interface. Oscillations in the charge density profile extend screening to longer distances and limit the capacitance of the interface. Ion–ion correlations are enhanced in proximity of the interface but retain the exponentially decaying oscillatory form of their bulk counterpart. Diffusion is slower in the molecularly thin layer of ions next to the interface than in the bulk. The analysis of interfaces is completed by the computation of structural properties of bulk phases, and by the estimate of transport coefficients such as self-diffusion, electrical conductivity, and especially thermal conductivity, which is seldom computed by simulation. All together, the results of our simulations for homogeneous and inhomogeneous molten carbonates provide crucial insight on systems and properties relevant for advanced devices such as fuel cells, that, in turn, might play a prominent role in future power generation strategies.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b02842

DOI: 10.1021/acs.jpcc.7b02842

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.