3 years ago

Sparse estimation of multivariate Poisson log-normal models from count data

Naren Ramakrishnan, Xinwei Deng, Hao Wu
Modeling data with multivariate count responses is a challenging problem because of the discrete nature of the responses. Existing methods for univariate count response cannot be easily extended to the multivariate case since the dependence among multiple responses needs to be properly accommodated. In this paper, we propose a multivariate Poisson log-normal regression model for multivariate count responses by using latent variables. By simultaneously estimating the regression coefficients and inverse covariance matrix over the latent variables with an efficient Monte Carlo EM algorithm, the proposed model takes advantage of the association among multiple count responses to improve the model prediction accuracy. Simulation studies and applications to real-world data are conducted to systematically evaluate the performance of the proposed method in comparison with conventional methods.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/sam.11370

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.