3 years ago

Deep Tumor Penetrating Bioparticulates Inspired Burst Intracelluar Drug Release for Precision Chemo-Phototherapy

Deep Tumor Penetrating Bioparticulates Inspired Burst Intracelluar Drug Release for Precision Chemo-Phototherapy
Yang Ding, Bo Sun, Yaw Opoku-Damoah, Huaqing Zhang, Yue Han, Ziqiang Zhao, Ruoning Wang, Jianping Zhou, Hao Cheng
The relevance of personalized medicine has inspired research for individually concerted diagnosis and therapy. Numerous efforts are devoted to designing drug particulates with capabilities of tumor penetrating and subcellular trafficking to concurrently discharge theranostics in response to multistimulations. In this study, a bioinspired particulate, formulated with whole components of native high-density lipoproteins (HDLs) and decorated with the tumor-penetrating peptide iRGD, is proposed to promote tumor penetration of HDLs (pHDLs) together with payloads. Specifically, paclitaxel (PTX), and the NIR fluorescent probe indocyanine green (ICG) are integrated into pHDLs (pHDL/PTX-ICG) for synergetic chemo-phototherapy. Inspired by lipoproteins, pHDLs are not only restored from naturally occurring materials but also possessed artificially endowed functions, leading to an enhanced cellular uptake, higher accumulation, and deep penetration into tumors without causing appreciable adverse effects, compared to reconstituted HDLs or lipid-based nanoparticles. After intravenous administration, pHDL/PTX-ICG performs a burst of intracellular drug release and imaging-guided precision chemo-phototherapy upon NIR irradiation that completely eradicates xenograft tumors. Neither recurrence nor significant toxicity is observed due to maneuvered regional photodynamic and photothermal therapy. Taken together, pHDL/PTX-ICG is proven to be a promising platform to achieve deep tumor penetration and imaging-guided chemo-phototherapy. In this study, a bioinspired particulate, formulated with whole-components of native high-density lipoproteins (HDLs) and decorated with the tumor-penetrating peptide iRGD, is proposed to promote tumor penetration of HDLs (pHDLs) together with payloads. Specifically, paclitaxel (PTX), and the NIR fluorescent probe indocyanine green (ICG) are integrated into pHDLs (pHDL/PTX-ICG) for synergetic chemo-phototherapy.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201703110

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.