3 years ago

Tunable Catalytic Performance of Single Pt Atom on Doped Graphene in Direct Dehydrogenation of Propane by Rational Doping: A Density Functional Theory Study

Tunable Catalytic Performance of Single Pt Atom on
Doped Graphene in Direct Dehydrogenation of Propane by Rational Doping:
A Density Functional Theory Study
Zhen Zhao, Peng Han, Bo Li, XiaoYing Sun
The catalytic reaction pathways and performance of supported single Pt atom on nitrogen- and boron-doped graphene in the direct dehydrogenation of propane (PDH) are investigated by using first principles calculations. The different dopants on graphene have distinct effects on the electronic structure of the supported Pt atom. The nitrogen on the support withdraws electrons from Pt, but boron donates electrons to Pt. Consequently, the d-band center of Pt atom is modified by either nitrogen or boron doping. The nitrogen doping shifts the d-band center of Pt atom closer to the Fermi level compared with the boron doping and the pristine ones. On the other hand, the d-band center has a significant influence on the CH bond dissociation energy and reaction barrier. Therefore, better reactivity of Pt is found on the support with more nitrogen dopants as the d-band center is closer to the Fermi level. Also the calculated dissociation energy and the first CH bond activation barrier obey the BEP rule. The different ratios between nitrogen and boron on the codoped graphene can continuously adjust the electronic structure of supported Pt and deliver the dissociation energy and reaction barrier in between the pure nitrogen- and boron-doped cases. Among various investigated supports, the graphene doped by pyridine nitrogen is predicted to be the most effective for enhancing Pt catalytic performance. The current work shows the promising catalytic performance of supported single Pt atom in PDH. More importantly, the tunable properties of the supported metal catalysts on the carbon materials are achieved by the rational doping, which provides a practical strategy for the catalyst optimization.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09736

DOI: 10.1021/acs.jpcc.7b09736

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.